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Figure 1. Multi-context visual grounding is a new task that aims at localizing instances based on open-ended text prompts in multi-image
scenarios. A new dataset MC-Bench is constructed to benchmark the MLLMs and foundation models with potential multi-context visual
grounding capabilities.

Abstract

While multimodal large language models (MLLMs) have
demonstrated extraordinary vision-language understanding
capabilities, their abilities to solve instance-level visual-
language problems beyond a single image warrant further
exploration. To assess these unproven abilities of MLLMs,
this paper proposes a new visual grounding task called
multi-context visual grounding, which aims to localize in-
stances of interest across multiple images based on open-
ended text prompts. In order to facilitate this research, we
construct a new dataset MC-Bench that features 2K high-
quality and manually annotated samples. Each sample con-
sists of an instance-level labeled image pair and a cor-
responding text prompt that indicates the target instances
in the images. These text prompts are highly open-ended
and grouped into three distinct styles, covering 20 practi-
cal skills. We benchmark over 20 state-of-the-art MLLMs
and foundation models with potential multi-context visual
grounding capabilities, as well as a simple yet effective
stepwise baseline and a finetuned baseline by multi-context
instruction tuning. Our evaluation reveals a non-trivial per-
formance gap between existing MLLMs and humans, along
with some interesting observations that suggest potential fu-
ture directions. We hope MC-Bench and our empirical find-
ings can encourage the research community to further ex-
plore and enhance the untapped potentials of MLLMs in
instance-level tasks, particularly in multi-image contexts.

Project page: https://xuyunqiu.github.io/MC-
Bench/.

1. Introduction

Grounding visual content guided by textual inputs is a long-
standing research topic involving vision-language under-
standing and visual localization tasks. Early works typically
focus on locating instances of interest using simple textual
expressions, such as object detection (OD) [7, 60, 62] and
open-vocabulary object detection (OVD) [14, 29] based on
category names, as well as referring expression compre-
hension (REC) [24, 68, 73] and describe object detection
(DOD) [64, 83] with referring phrases. However, the text
descriptions in real-world applications are often more flexi-
ble and ambiguous. Grounding objects using free-form tex-
tual descriptions in an open world is challenging, as models
must comprehend the intentions of ambiguous text inputs
and grasp the overall context within the images. Recently,
the development of foundation models [32, 45, 66] has cat-
alyzed a shift from specialized models to general-purpose
foundation models, showcasing unprecedented generaliza-
tion capabilities. Despite significant progress made by these
foundation models, they usually struggle with complex text
descriptions, limiting broader their applications for real-
world use.

Since the advent of multimodal large language mod-
els (MLLMs) [1, 4, 13, 19, 37, 43, 96], these models
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The bird in the shorter food chain

[RDC] Reasoning over 
Diagrams and Charts [MHR] Multi-Hop Reasoning

The inappropriate or unnecessary clothes from the 
first image in the climate of the second image

[FD] Forensic Detection

The red apple in the image that 
is more likely to be a real photo

[SRU] Spatial Relation Understanding 

The hippopotamuses submerged entirely in water The people in the illustration 
introducing vitamin D

[DPC] Document Photo Comprehension  

Chess pieces with the same role

[EKU] Expert Knowledge Understanding 

The product being displayed 
that has higher prices

[WU] Webpage Understanding [AU] Artwork Understanding

The musical instruments that 
appear in both pictures

[PAU] Pose and Action Understanding

The man who has already swung a golf club The person cutting his teeth on baseball

[FLU] Figurative Language Understanding 

[AC] Attribute Comparison 

Tables with the same shape

[IC] Instance Counting

Babies in families with more members

[SC] Sign Comprehension

The sign showing more
attractive promotions

[CSR] Common Sense Reasoning

The drink you need more 
when you feel sleepy

[TU] Temporal Understanding 

Right shoe of the man 
in the second frame

[IQU] Image-Quality Understanding 

The stone sculpture with 
more overexposure

[MVR] Multi-View Reasoning

The trash can closer to the 
sink in the images

[LR] Logical Reasoning

The fastest cyclist

[SU] Scene Understanding 

The person teaching in the classroom A pizza with mushrooms

[FGI] Fine-Grained Instance Identity

Figure 2. MC-Bench contains diverse samples covering 20 practical skills.

have advanced significantly, demonstrating extraordinary
capabilities in understanding human language and reason-
ing about the visual world. Besides solving image-level
visual-language tasks such as image captioning [4] and vi-
sual question answering (VQA) [3], some recent MLLM
works [11, 12, 88, 92] have also explored more fine-grained
tasks, showcasing promising region understanding and vi-
sual grounding capabilities. Despite their significance, we
notice that, like many early visual grounding works, pre-
vious region-level MLLMs typically focus on single image
inputs, ignoring the cross-image context.

We believe that multi-image vision-language intelli-
gence plays a pivotal role in many real-world applications,
where the ability to extract and integrate contextual infor-
mation from multiple images provides essential cues that
enhance complex comprehension and reasoning. For in-
stance, in autonomous driving, models [15, 65] can better
understand pedestrians and vehicles in the 3D world by in-
tegrating data from multiple camera angles. In security and
surveillance, models [10, 63] can enhance system under-
standing of the dynamic environment by integrating multi-
ple frames from different cameras to identify and analyze
the targets across different time and locations. General-
purpose AI assistants (e.g., chart analysis [97] and GUI
agents [84]) are capable of understanding and reasoning
across multiple contexts to identify correlations/discrepan-
cies and make decisions. Although some early works inves-
tigate vision-language intelligence in multi-image scenar-
ios, they are limited to image-level tasks [44, 70] or without
complex textual descriptions [28, 71].

Driven by this intuition, this paper explores a significant
yet largely overlooked scenario and introduces a practical
multi-image instance-level task, namely multi-context vi-
sual grounding, to assess such unproven abilities of existing
MLLMs. This new task focuses on reasoning and localizing
regions of interest across multiple images based on open-
ended text prompts. As illustrated in Figure 1a, compared
to existing language-based visual grounding tasks [24, 57,
64, 68, 73, 83], multi-context visual grounding is more
challenging, as it takes cross-image context into considera-
tion and uses more nuanced and flexible textual expressions
along with greater diversity of disciplines.

To facilitate the research, we present MC-Bench, the
first MLLM benchmark specifically designed for visual
grounding in multi-image scenarios. MC-Bench comprises
2,000 manually labeled samples, each featuring paired im-
ages, instance-level annotations and a corresponding text
prompt. The text prompts are categorized into three distinct
styles (i.e., referring, comparison and reasoning), covering
20 practical skills applicable to real-world scenarios (see
Figure 2). Overall, we collect 3,345 diverse images from
over 10 data sources, covering natural images, charts, doc-
ument photos, artworks and scientific diagrams. We then
carefully curate 2,000 image pairs and manually annotated
1,514 unique open-ended text prompts, along with 3,202
language-grounded bounding boxes.

We evaluate over 20 baselines with potential multi-
context visual grounding capabilities on MC-Bench, includ-
ing advanced MLLMs and a few relevant foundation models
without LLMs. Experimental results indicate that current
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Table 1. Comparison to related vision-language datasets from different dimensions, i.e., multi-image input, instance-level annotation,
multi-domain data and text description types. 47 in the multi-image column indicates datasets containing multi-image subsets.

Datasets multi-image instance-labeled multi-domain text description types

MS-COCO [41] 8 4 8 object categories & image-level captions
RefCOCO/g/+ [31, 51] 8 4 8 category/attribute/relation descriptions
RIO [57] 8 4 8 sentences of intention descriptions for objects
D3 [83] 8 4 4 unrestricted descriptions for any number of instances
OmniLabel [64] 8 4 4 complex object descriptions for any number of instances
ODinW [35] 8 4 4 object categories & external knowledge descriptions
VQS [18] 8 4 8 multi-choice QAs from the VQA dataset [3]
VizWiz-VQA-G [8] 8 4 8 multi-choice QAs from the VizWiz-VQA dataset [23]

MMBench [46] 47 8 4 multiple-choice QAs covering multiple ability dimensions
MMMU [86] 47 8 4 multi-choice & open QAs covering diverse disciplines
SEED-Bench [34] 47 8 4 multi-choice QAs spanning numerous dimensions
BLINK [17] 47 8 4 multi-choice QAs on visual perception abilities
MileBench [67] 4 8 4 multi-choice & open QAs on long video & image sequences
Mantis-Eval [27] 4 8 4 multiple-choice & open QAs on image sequences
MICBench [81] 4 8 4 multi-choice QAs on comparing image quality
Mementos [77] 4 8 4 descriptions capturing unfolding events on image sequences

MC-Bench (ours) 4 4 4 open-ended instance-level descriptions over multiple images

MLLMs have significant potential for improvement. Con-
cretely, while small-scale MLLMs (no larger than 7B) can
achieve comparable instance-level performance to the foun-
dation models [45, 66], they typically show better image-
level performance. As MLLMs scale up, their performance
improves significantly on all metrics. We also observe
that the specialist MLLMs trained exclusively on single-
image visual grounding data struggle with multi-context
scenarios. In contrast, some generalist MLLMs with strong
instruction-following capabilities generalize better in multi-
context visual grounding, particularly those trained with
multi-context data, even if that data is not instance-level la-
beled. Nevertheless, a simple stepwise baseline that inte-
grates the strengths of GPT-4o [1] and G-DINO [45] can
easily outperform all evaluated end-to-end MLLMs by a
clear margin, highlighting the potential for improvement.
We also introduce a fine-tuned baseline that is trained using
synthesized multi-context instruction tuning data. More-
over, we conduct human evaluations to establish an upper
bound for existing MLLMs, revealing a significant perfor-
mance gap between MLLMs and humans.

We hope our MC-Bench and empirical findings can en-
courage the research community to delve deeper to discover
and enhance the untapped potentials of MLLMs in instance-
level tasks particularly in multi-image scenarios. The main
contributions of this paper can be summarized as follows:
• To the best of our knowledge, this work is the pioneer to

explore the use of MLLMs for multi-image instance-level
scenarios in open environments, and suggests a practical
multi-context visual grounding task.

• We construct a new dataset, MC-Bench, featuring 2K
manually annotated samples consisting of image pairs,

text prompts, and corresponding instance-level labels.
The diverse images and the open-ended prompts enable
the evaluation of MLLMs from a wide range of dimen-
sions.

• We benchmark more than 20 relevant MLLMs and foun-
dation models on MC-Bench, revealing a non-trivial per-
formance gap between existing MLLMs and humans. Be-
yond the performance scores, this work provides insight-
ful analysis aimed at guiding improvements in MLLM de-
velopment.

2. Related Works

MLLM Benchmarks. Numerous benchmarks evaluate
MLLMs with single-image inputs, and the assessments of
the multimodal capabilities with multiple images does not
receive much attention. Only a few recent benchmarks take
multi-image evaluations into consideration, where some of
them focus on specific domains and tasks (e.g., low-level
vision [80, 81] and temporal understanding [38, 39]). As
summarized in Table 1, some concurrent works [17, 27, 46,
67, 86] present multi-image MLLMs benchmarks for more
general purposes, covering multiple fields and disciplines.
However, they are annotated for image-level perception,
comprehend and reasoning tasks (e.g., VQA), none of them
is designed for instance-level tasks. Current MLLMs for
instance-level tasks are usually evaluated on conventional
benchmarks [8, 11, 18, 26, 31, 51] with limited diversity
and no multi-image context.

Open-Ended Visual Content Grounding. Benefiting from
the pre-trained visual-language models [58, 89], open-
vocabulary object detection [20, 53, 87] has received in-

3



[Comparison] The person with 
the most severe motion blur [Comparison] The men wearing the same type of hats [Referring] A lion on the battlefield

[Reasoning] Right shoe of the man in the second frame [Referring] Apples with same colors[Reasoning] The dart with the lowest score on the disc in images

Figure 3. MC-Bench contains three distinct styles of open-ended textual descriptions, i.e., referring, comparison and reasoning.

creasing attention, which localizes objects of arbitrary cat-
egories using language to achieve zero-shot transferabil-
ity. Besides leveraging category names, another line of
work [24, 57, 68, 73, 83] investigates grounding visual con-
tent using simple referring phrases or sentences that of-
ten include auxiliary cues that help distinguish specific in-
stances from others within the same category. With the im-
pressive success of LLMs, MLLMs have emerged as a piv-
otal advancement that serves to effectively connect vision
and language tasks. While MLLMs [1, 4, 13, 19, 37, 43, 96]
demonstrate remarkable capabilities on image-level tasks,
several recent studies [12, 21, 42, 49, 56, 59, 76, 85, 90,
93, 94] explore the potential of enabling MLLMs to per-
form region-level tasks through instruction tuning. How-
ever, most of prior works focus on grounding objects from
independent images and ignore the multi-image context.

MLLMs with Multi-Image Context. Unlike most previ-
ous MLLLMs take single-image-text pairs as inputs, some
variants of MLLMs [48, 50, 91] tailored for video tasks in-
herently support multiple frames and long contexts. How-
ever, these models designed to comprehend temporal se-
quences and often face challenges when dealing with single
images or multiple images that are not related temporally.
Another line of work [2, 4, 5, 9, 36, 38, 55] has also notice
the importance of multiple-image capabilities for real-world
applications, and takes effort for scaling the context to en-
able MLLMs to handle multiple and interleaved image-text
inputs. Nevertheless, prior MLLMs largely neglect the mul-
timodal capabilities in multi-image instance-level scenarios.

3. MC-Bench

3.1. Multi-Context Visual Grounding

Visual Grounding with Multi-Image Context. To meet
the demands of open-ended real-world applications, this pa-

per suggests a practical multi-image, instance-level vision-
language task called multi-context visual grounding. Given
a multimodal input sample, i.e., multiple images and a text
prompt, the models are required to localize all instances ref-
erenced in the input text description. Without loss of gen-
erality, this work initially sets the number of multi-images
in the input samples to a pair. An image pair in each in-
put sample is temporally, spatially or semantically related,
with the text prompt linking them through various shared
concepts or relationships.

Visual Grounding with Open-Ended Expressions. Multi-
context visual grounding aims at localizing specific in-
stances within images using flexible and diverse text
prompts, covering a broad range of practical skills. As il-
lustrated in Figure 3, we design three distinct styles of text
prompts for grounding: referring, comparison and reason-
ing. The referring style prompts identify instances using
their category, attributes or positional information, either
directly or indirectly. The comparison style prompts are
slightly more challenging, requiring models to ground in-
stances by comparing the visual content across multiple im-
ages. These comparisons can be global, based on image-
level cues (e.g., the quantity of objects and image quality),
or local, focusing on the attributes (e.g., color and shape) of
objects within the images. The reasoning style prompts de-
scribe instances in a more challenging manner, where mod-
els struggle to locate instances without relying on external
knowledge (e.g., common sense and multi-hop reasoning
skills) beyond the input itself.

Visual Grounding with One-to-Any Matching. Since the
text descriptions in multi-context visual grounding are un-
restricted, each positive sample includes a text prompt that
may refer to one or multiple instances within the images of
that sample. In contrast, the text prompts in negative sam-
ples describe no instance within the images, and the models
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are encouraged to reject these negative inputs. Textual ex-
pressions in the real world often exhibit high generalization
and polysemy Therefore, we assume that the models can ac-
curately understand the intent behind flexible prompts and
group target instances accordingly. As shown in the top-
right of Figure 3, given images featuring apples of two col-
ors and a prompt Apples of the same colors, the models are
encouraged not only to detect all the apples but also to group
them according to their colors.

3.2. Dataset Curation

To the best of our knowledge, there is no existing dataset
suitable for language-grounded cross-image instance-level
tasks like multi-context visual grounding. To facilitate the
research, we try to construct an evaluation-only dataset and
faithfully benchmark the multimodal comprehend, reason-
ing and grounding capabilities of existing MLLMs in multi-
image scenarios.

Multi-Source Image Collection. Our goal is to create a
high diverse benchmark that can better simulate a variety of
real-world scenarios. Guided by such goal, we first select
images covering a wide range of domains and topics, e.g.,
natural images, comics, scientific diagrams, artworks, doc-
ument photos, webpage screenshots, synthesized images
and etc. Unlike conventional benchmarks, we emphasize
instance-level tasks in real-world scenarios and collect a
more extensive set of scene-centric images featuring a vari-
ety of object sizes and domains. In total, we incorporate im-
ages from multiple data sources, including more than 10 ex-
isting datasets [6, 17, 27, 33, 41, 52, 54, 69, 79, 80, 82] and
a few additional images crawled from the Internet. Please
refer the Appendix for more details.

Linking Images through Text Descriptions. We then re-
purpose the collected images and link image pairs using
open-ended text descriptions. Concretely, the images are
grouped into distinct subsets based on similar themes or do-
mains. The annotators are tasked with selecting image pairs
from the subsets and writing an open-ended text prompt
for each selected image pair, where the text prompts are
supposed to properly leverage the cross-image context and
clearly identify instances. In addition, to facilitate the sub-
sequent annotation process, annotators are asked to assign
positive/negative flags to indicate whether the images con-
tain at least one instance described by the text prompt.

Instance-Level Labeling and Cyclic Review. After label-
ing the text descriptions for each image pair, we distribute
the triplets to other annotators for subsequent annotation.
Given textual descriptions written by the text annotators,
the box annotators are tasked with identifying the relevant
instances within the positive samples and drawing bounding
boxes to enclose them. Once all the samples have instance-
level annotations, we reassign them to the annotators who
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Figure 4. Statistical analysis of the proposed MC-Bench.

label the text prompts, asking them to review the bound-
ing boxes to ensure they properly encompass the target in-
stances indicated by the written prompt. If any inconsisten-
cies are found, the samples will be flagged for relabeling
as part of the quality control process. We build an online
annotation platform based on Label Studio [72], leveraging
its programmable and user-friendly interface for annotating
paired images (see the interface example in the Appendix).

3.3. Dataset Statistics
We gather a total of 3,345 different images from various
sources, covering various domains and topics. We meticu-
lously organize the collected images into 2,000 image pairs
and provide 1,514 unique open-ended text descriptions for
these image pairs. As shown in Figure 4d, the length of the
text descriptions ranges from 2 to 24 words, with an aver-
age of 7.2. Each text prompts describe visual content within
paired images without restriction. Besides 1,709 positive
samples, we add a small proportion of negative examples
to evaluate the capabilities of models for rejecting nega-
tive inputs, as in Figure 4a. As illustrated in Figures 4b
and 4c, MC-Bench contains three distinct styles of text ex-
pressions (i.e., 346, 810 and 844 for referring, comparison
and reasoning respectively) and 20 practical skills (e.g., at-
tribute comparison, logical reasoning, common sense rea-
soning and etc.).

For the instance-level annotations, our MC-Bench in-
cludes 3,202 language-grounded bounding boxes in total.
As summarized in Figure 4e, each prompt in positive sam-
ples indicates 1 to 17 instances of 1 to 7 groups within im-
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age pairs, while there is no instance related the negative de-
scriptions. Unlike benchmarks for image-level tasks, we
collect more challenging scene-centric images and label in-
stances with divers sizes. The sizes of the labeled bounding
boxes range from 4e-6 to 1, and the distribution is shown in
Figure 4f.

4. Experiments
4.1. Evaluation Metrics
Image-Level Metrics. For multi-context visual grounding
task, we design image-level and instance-level metrics to
evaluate the performance of models from different dimen-
sions. Accuracy (Acc) is used to confirm whether the mod-
els can correctly identify which images contain the objects
indicated by each text prompt, where the instance quantity
and fine-grained location information is not considered.

Instance-Level Metrics. We choose average precision
(AP50) as the instance-level metric to verify whether the
models can locate the target instances with multi-context
inputs. For the sample where text prompt describes mul-
tiple groups of instances, we first employ group matching
to align each predicted group with the appropriate ground-
truth group and ensure that the mean IoU across all predic-
tions is maximized.

4.2. Baselines
Since the multi-context visual grounding is a new task, we
implement and evaluate various advanced approaches with
potential visual grounding capabilities, including latest pro-
prietary and open-source MLLMs as well as foundation
models without LLMs. Most existing methods do not sup-
port multi-image inputs, and we horizontally concatenate
the images before feeding them to these models.

Specifically, we select and evaluate ¶ the API-based
generalist MLLMs, such as GPT-4o [1] and Gemini-
1.5 Pro [61], · the open-source generalist MLLMs
(e.g., Qwen-VL [5], Qwen2-VL [75], MiniGPT-v2 [9],
SPHINX [42] and Kosmos-2 [55]) which are capable of per-
forming a wide range vision-language tasks, ¸ the open-
source specialist MLLMs (e.g., Shikra [12], Ferret [85],
Groma [49], Lenna [78] and GroundingGPT [40]) tailored
to visual grounding-related tasks and ¹ the foundation
models without LLMs, such as G-DINO [45], APE [66]
and ONE-PEACE [74]. More detailed model ID informa-
tion and prompts are provided in the Appendix.

Apart from aforementioned end-to-end approaches, we
devise and assess º a stepwise baseline that follows a sim-
ple yet effective divide-and-conquer strategy and takes the
advantages of MLLMs and detectors in reasoning and lo-
calization respectively. Concretely, we prompt GPT-4o to
analyze the multi-context inputs and select images contain-
ing instances described by the textual inputs. GPT-4o is

“People with flags in their hands”

Analysis: The input prompt specifies looking for instances
where people are holding flags. In image1, there is one 
person holding a flag on a golf course. In image2, there is 
another person holding a flag as well.

Selected image: both,

Referring phrases for instances within image1 (group1):
["Person in black outfit holding a red flag"],
Referring phrases for instances within image2 (group1) :
["Person in grey shirt holding a red flag"]

<System Prompt>: …

Analysis: The task is to identify people in the same role
within the interview setup, such as interviewers, cameramen,
or interviewees. The images show two different interview
scenarios, each with a distinct group of people fulfilling
various roles.

Selected image: both,

Referring phrases for instances within image1 (group1):
[“Person holding the microphone interviewing the  man”, 
"Person holding the large camera"],
Referring phrases for instances within image2 (group1) :
[“Person holding the microphone in front of the elderly 
woman”, "Person holding the camera near the man with the 
microphone"]

“People with the same role in the interview”

<System Prompt>: …

<Grounding Results>: …

Figure 5. Some case examples of the stepwise baseline, where the
correct and wrong predictions are highlighted using green and red.
The left case shows the detection error caused by G-DINO, while
the right case demonstrates the grouping error caused by GPT-4o.

further requested to generate concise and discriminative re-
ferring phrases for each individual target instance. We fi-
nally localize the target objects using G-DINO [45] along
with the GPT-generated referring phrases. Some examples
of the stepwise baseline are depicted in Figure 5.

We also introduce and evaluate » a finetuned baseline
that enhances existing end-to-end MLLM (i.e., Qwen2-VL-
7B [75]) by multi-context instruction tuning. We construct
a multi-context instruction tuning dataset with over 50K
samples by collecting multi-context image-level task sam-
ples from existing datasets [16, 27] and synthesizing multi-
context instance-level task samples. To accelerate the train-
ing process/maintain the generalization capabilities of the
MLLM, we finetune models with LoRA [25]. Please refer
the Appendix for more training details.

We conduct ¼ human evaluations to establish an upper
bound for the models. In total, we invite 3 volunteers who
have not been exposed to annotated data to participate in the
evaluation with all 2K multi-context samples. Given each
textual prompt, the participants are asked to draw bounding
boxes to the instances in corresponding image pairs.

4.3. Benchmark Results
We divide existing approaches into different groups and re-
port their performance in Table 2. The proprietary gener-
alist MLLMs [45, 61] are used through API calls and gen-
erally considered to have huge model sizes. These mod-
els inherently support image sequence inputs and show
strong image-level comprehend and reasoning capabilities.
However, while Gemini-1.5 Pro [61] achieves competi-
tive instance-level performance, GPT-4o [1] exhibits limited
fine-grained localization capabilities.

For the open-source MLLMs accepting image sequence
inputs (i.e., Qwen-VL-Chat [5] and Qwen2-VL [75]), we
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Table 2. Comparison of baselines on MC-Bench. Sequence indicates whether the model supports image sequences as inputs, where 47

denotes that some intermediate steps support image sequences. The superscripts ref, com and rea denote the results for the three specific
types respectively.

Image-Level Instance-Level

Methods sequence LLM size Accref Acccom Accrea Acc APref
50 APcom

50 APrea
50 AP50

API-Based Generalist MLLMs
GPT-4o [1] 4 - 69.4 82.8 77.5 78.3 1.8 4.1 2.3 2.8
Gemini-1.5 Pro [61] 4 - 55.8 65.1 62.7 62.5 30.5 30.0 26.1 28.4

Open-Source Generalist MLLMs
Qwen-VL-Chat [5] 4 7B 33.8 34.8 31.8 33.4 10.9 9.5 9.7 9.8
Qwen-VL-Chat [5] 8 7B 36.7 47.7 45.5 44.9 21.8 19.5 17.4 18.6
Qwen2-VL [75] 4 7B 44.2 61.1 54.3 54.9 22.7 22.4 17.2 20.2
Qwen2-VL [75] 8 7B 43.4 52.2 53.7 51.3 19.8 18.6 18.1 18.3
Qwen2-VL [75] 4 72B 61.3 79.1 68.0 71.3 33.0 34.7 27.6 31.9
Qwen2-VL [75] 8 72B 43.1 53.5 52.8 51.4 30.0 29.4 25.2 27.6
SPHINX-1k [42] 8 13B 41.9 49.6 51.1 48.9 16.2 16.8 14.3 15.6
SPHINX-v2-1k [42] 8 13B 41.3 52.2 38.9 44.7 26.4 23.3 19.4 22.0
MiniGPT-v2 [9] 8 7B 34.1 43.8 45.6 42.9 11.6 13.2 11.5 12.3

Open-Source Specialist MLLMs
Shikra [12] 8 7B 37.6 44.7 45.4 43.8 10.0 11.4 9.5 10.2
Kosmos-2 [55] 8 1.6B 26.3 30.6 33.6 31.2 10.7 13.0 10.9 11.4
Lenna [78] 8 7B 30.1 30.6 28.6 29.6 17.1 15.0 13.4 14.4
Groma [49] 8 7B 34.4 44.4 42.4 41.9 17.2 16.9 13.6 15.5
GroundingGPT [40] 8 7B 35.5 43.3 46.3 43.3 14.0 14.3 12.3 13.5
Ferret [85] 8 7B 34.7 42.6 45.5 42.5 12.8 13.6 10.0 11.6
Ferret [85] 8 13B 35.8 44.7 48.6 44.8 13.3 14.5 13.0 13.6
CogVLM-Grounding [76] 8 17B 40.5 50.2 50.1 48.5 21.1 19.0 16.5 18.2

Foundation Models without LLMs
G-DINO-B [45] 8 8 31.5 30.4 30.9 30.8 14.0 16.1 15.3 15.2
APE (D) [66] 8 8 24.0 20.6 16.1 19.3 20.3 21.3 16.3 19.1
ONE-PEACE [74] 8 8 32.9 42.7 42.3 40.9 17.4 17.0 11.4 14.4

Stepwise BaselineGPT-4o+G-DINO 47 - 66.5 84.8 75.7 77.8 41.1 38.3 34.1 36.7
Finetuned BaselineQwen2-VL-7B 4 7B 47.1 59.9 60.0 55.7 26.5 24.9 21.9 23.6

Humans - - 89.0 95.4 90.5 92.2 47.8 43.5 42.0 43.1

compare both sequence- and merge-image variants. We
find that as model capabilities increase (i.e., Qwen-VL to
Qwen2-VL, and 7B to 72B LLM), the sequence-image vari-
ants more clearly exceed merge-image variants. Among
all tested open-source MLLMs [5, 9, 42, 75], Qwen2-VL-
72B [75] with image sequence inputs achieves the best
performance, even outperforms proprietary MLLMs on
instance-level metrics.

Generally, the specialist MLLMs [12, 40, 49, 55, 76, 78,
85] are specially designed or fine-tuned for visual ground-
ing related tasks. However, in multi-context visual ground-
ing, existing specialists obtain worse results in terms of both
image-level and instance-level metrics. For instance, the
largest specialist CogVLM-Grounding-17B [76] achieves
comparable performance to some 7B generalist MLLMs
(e.g., Qwen-VL-Chat and Qwen2-VL). We attribute this to
the limited generalization capabilities of these specialists

tailored to single-image scenarios.
Compared to MLLM counterparts, the foundation mod-

els [45, 66, 74] without LLMs still perform well on
instance-level metrics. However, these models tend to gen-
erate redundant low-confidence boxes within irrelevant im-
ages, leading to deteriorated Acc performance. The step-
wise baseline integrates extraordinary multi-modal compre-
hension and reasoning capabilities of GPT-4o and excellent
localization capabilities of G-DINO [45], thereby achieving
remarkable results and surpassing aforementioned end-to-
end approaches. We also observe that after multi-context
instruction tuning, the cross-image perception and local-
ization capabilities of Qwen2-VL-7B are significantly en-
hanced, leading to 0.8% Acc and 3.4% AP50 gains. More-
over, we calculate the average results of all volunteers as the
upper bound. Human evaluations outperform the stepwise
baseline by 14.4% and 6.4% on Acc and AP50 respectively,
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Figure 6. More analysis experiments on MC-Bench.

underscoring a clear performance gap between models and
humans.

4.4. More Analysis

We conduct multiple experiments to further explore
MLLMs from different perspectives. For the open-source
MLLMs (e.g., Qwen2-VL and Ferret) with various model
size variants, we analyze the impact of model size, as visu-
alized in Figure 6a. Larger models show sustained perfor-
mance improvement on both Acc and AP50, consistent with
the scaling law [30].

In multi-context visual grounding, a single text prompt
may describe objects from multiple groups. As shown in
Figures 6b and 6c, we find that current approaches struggle
with assigning groups, with most models predicting only
one group. By replacing the standard instance-level metric
with a group-agnostic one, several baselines achieve higher
AP scores, indicating that while these methods correctly lo-
calize the instances, they fail to assign the correct group.
Moreover, we find that most models generate only about
one instance per sample on average, as illustrated in Fig-
ure 6d. These observations suggest potential for improve-
ment in generating multiple instances and assigning groups.

Following the MS-COCO [41] standard, we divide the
instances into different scales (i.e., small, medium and
large) and visualized the results for different object sizes
in Figure 6e. We observe that while existing models cor-
rectly localize large-scale instances, they usually struggle
to ground medium and small objects.

To verify the models’ ability to reject negative samples,
we calculated the average number of predictions across all
negative samples, as shown in Figure 6f. We observe that

most models struggle with negative samples. Gemini [61]
performs the best, with 0.42 predictions per negative sam-
ple, but this is still significantly worse than human perfor-
mance (0.19 predictions per negative sample).

5. Conclusion

This paper investigate a valuable yet overlooked problem
in the field of MLLMs and proposes a new task, namely
multi-context visual grounding. Unlike existing works fo-
cus on single-image understanding, multi-context visual
grounding aims to localize instances in multi-image scenar-
ios. Additionally, the text prompts used in multi-context
visual grounding are more open-ended and challenging
compared to those in previous language-based localiza-
tion tasks. To facilitate the research, we introduce MC-
Bench, a new benchmark designed for instance-level tasks
in multi-context scenarios. MC-Bench contains 2,000 im-
age pairs with diverse text prompts describing target in-
stances in three distinct styles, covering 20 practical tasks.
After benchmarking over 20 advanced MLLMs and founda-
tion models, we found that current models typically struggle
with multiple images and exhibit frustratingly low perfor-
mance compared to the human upper bound. We conduct
multiple analytical experiments to further investigate the is-
sues that hinder the improvement of existing methods and to
identify future directions for development. Our research ad-
vances MLLM development by highlighting weaknesses in
instance-level tasks within multi-image scenarios, and MC-
Bench serves as a valuable resource for further research. We
hope our findings will draw attention to the application of
MLLMs in instance-level tasks within multi-context scenar-
ios.
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MC-Bench: A Benchmark for Multi-Context
Visual Grounding in the Era of MLLMs

Supplementary Material

In this Supplementary Material, we provide additional
details and results omitted in the main text:

• Appendix A: General discussions about MC-Bench, in-
cluding license information, intended use, social impacts,
and limitations and future works.

• Appendix B: Implementation details, including exist-
ing datasets incorporated in MC-Bench, annotation inter-
faces, and evaluated baselines.

• Appendix C: Additional experimental results, including
ablation study for the finetuned models.

• Appendix D: The datasheets for MC-Bench, including
motivation, composition, collection processes, prepro-
cessing/cleaning/labeling, uses, distribution, and mainte-
nance.

A. General Discussions
A.1. License
The introduced MC-Bench dataset is licensed under the
Creative Commons Attribution 4.0 International License
(CC BY 4.0). This license applies to all the images and
annotations we have directly contributed. The dataset also
incorporates images sourced from pre-existing collections.
For these images, the original licensing terms are respected
and remain applicable.

A.2. Intended Use
MC-Bench is initially constructed to facilitate a significant
yet largely overlooked research problem, i.e., multi-context
visual grounding (grounding objects using open-ended tex-
tual prompts in multi-image scenarios). The primary pur-
pose of MC-Bench is to function as a dynamic benchmark
that continuously evolves and evaluates MLLMs for multi-
context visual grounding. Preliminary benchmark results
on MC-Bench not only reveal a large performance gap be-
tween current MLLMs and humans, but also identify future
directions for development through multiple analytical ex-
periments. We hope MC-Bench can encourage the research
community to delve deeper to discover and enhance these
untapped potentials of MLLMs in instance-level tasks par-
ticularly in multi-image scenarios.

A.3. Social Impacts
The data in MC-Bench is not expected to have specific neg-
ative impacts. As the images in MC-Bench are collected
from published and publicly available sources, so there are

few privacy concerns. Our text and bounding box annota-
tions do not contain any offensive, insulting or threatening
information. Although a few human annotations could be
subjective, we perform cyclic review and multi-round label-
ing procedures to reduce the bias and ensure the annotation
quality. Beyond the dataset, MC-Bench evaluates a variety
of advanced MLLMs and foundation models. The gener-
ated results of these models could be biased or wrong. The
related social impacts on the usage of AI-generated content
may apply to our work. Overall, we consider MC-Bench
exhibits minimal negative social impacts.

A.4. Limitations and Future Works
Although MC-Bench evaluates a wide spectrum of potential
skills, it does not cover all possible vision-language tasks in
real world and exhibits a long-tail distribution. Over time,
we aim to expand MC-Bench by adding a greater variety
of tasks and increasing the number of samples for the tail
tasks. Meanwhile, MC-Bench currently focuses on multi-
context samples consisting of two images and one corre-
sponding text description. In the future, we aim to extend
MC-Bench to accommodate a more general multi-context
visual grounding task by incorporating more multi-context
samples, each containing a larger number of images.

By the submission deadline, we have evaluated ∼20
recent representative approaches with publicly available
checkpoints or APIs. Since several concurrent works have
yet to release their code or checkpoints, we leave their eval-
uation for future work. We plan to establish a leaderboard
for MC-Bench and update it as new approaches are intro-
duced. Furthermore, in our current human evaluations, only
three subjects are evaluated, and the results may vary to
some extent due to differences in individual cognitive and
reasoning levels, as well as the ambiguity and subjectivity
of the text descriptions. We will invite more participants for
human evaluations to establish a more robust upper bound,
based on the average results of multiple individuals.

Benchmark results on MC-bench reveal a significant per-
formance gap between MLLMs and humans, especially for
the end-to-end models. While a few MLLMs accept image
sequences as inputs, few of them are specifically designed
for instance-level tasks. Our analysis experiments also show
some potential areas for improvement. Driven by these ob-
servations, we plan to investigate more effective solutions
for the multi-context visual grounding task in the future.

B. Implementation Details
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Table A.1. Existing datasets incorporated in our MC-Bench. We collect and repurpose the images for multi-context visual grounding. The
original tasks, original license information and URL links of source datasets are provided.

Source Datasets Original Tasks Original Licenses URL Links

MS-COCO [41] instance segmentation and image captioning CC BY 4.0 URL
GRD [82] referring expression segmentation CC BY 4.0 URL
Q-Bench [80] visual question answering on image quality CC BY-NC-SA 4.0 URL
Mantis-Eval [27] multi-image visual question answering Apache-2.0 URL
DocVQA [52] visual question answering on documents N/A URL
BLINK [17] question answering on visual perception tasks Apache-2.0 URL
CLEVR-Change [54] visual question answering on scene changes CC BY 4.0 URL
STAR [79] visual question answering on videos Apache-2.0 URL
NLVR2 [69] multi-image visual question answering N/A URL
WinoGAViL [6] vision-language associations CC BY 4.0 URL
SEED-Bench2-plus [33] visual question answering on text-rich images CC BY 4.0 URL

Figure B.1. The interface for collecting human annotations.

B.1. Existing Datasets Incorporated in MC-Bench

The images in MC-Bench are collected from multiple data
sources. We list the used source datasets in Table A.1, and
we also summarize their original tasks, original license in-
formation and URL links that may apply to future users.

B.2. Annotation Interfaces

We use the open-source annotation tool Label Studio [72]
for annotations, in instance-level labeling stage. Figure B.1
shows the user-friendly interface used for collecting human
annotations. The positive sample label in top left of the an-
notation interface indicates whether this sample is a positive
sample. The annotators are first asked to verify whether the
positive/negative sample label is correct. They are then re-
quired to categorize the style of the text prompts and draw
the bounding boxes. If positive sample label of the sample
being annotated is False, no box should be annotated.

B.3. Evaluated Baselines

Existing End-to-End Baselines. We evaluate several exist-
ing models with potential for multi-context visual ground-
ing, including latest proprietary and open-source MLLMs
as well as foundation models without LLMs. All the base-
lines are evaluated with the official pre-trained models and
default hyper-parameters. For the proprietary API-based
models, we evaluate the gpt-4o-2024-05-13 version
of GPT-4o [1] and the gemini-1.5-pro-002 version
of Gemini [61]. All experiments on open-source models
were conducted on 4 NVIDIA RTX 3090 GPUs, except for
Qwen2-VL-72B [75], which was excluded due to memory
constraints.

For the models inherently accept multi-image inputs, we
feed the image sequences to the models. For the models
only supports single-image inputs, we horizontally concate-
nate image pairs and feed the merged images to the models.
To allow the models to distinguish between image pairs, we
add a thin white band between two images.

For the specialist [12, 40, 49, 55, 76, 78, 85] and a few
generalist approaches [5, 9, 42] with predefined grounding
prompts, we utilize their default prompts provided to lo-
calize target objects within images. As for the generalist
models [1, 61, 75] without predefined grounding prompts,
we carefully select the optimal prompts to generate the best
results. Tables B.2 and B.3 showcase the prompts we use.

Stepwise Baseline. Following a divide-and-conquer strat-
egy, we first leverage GPT-4o as a reasoning agent to ana-
lyze the target regions and generate some referring phrases
that are easier for the detector to understand. Specif-
ically, we use the GPT API and prompt the model of
gpt-4o-2024-05-13 version to generate the intermedi-
ate results, and the utilized prompt is presented in Table B.4.

We extract the phrase information from the JSON files
generated by GPT. Then, we use the phrases as text query
to localize objects from corresponding images. Concretely,
the pre-trained G-DINO [45] with Swin-B [47] backbone
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Table B.2. The system prompt we used for GPT-4o and Gemini-1.5-Pro. All the prompts are the same except for the second step in the key
guidelines, which varies due to differences in the default coordinate system.

# Your Role: excellent object detector

## Objective
You will be provided with two images and a text describing some instances of interest in the images. Then, you will
analyze all inputs and find instances / regions in the images that match the input text prompt from the images. Finally, you
will output high-quality bounding box coordinates for each potential instance / region.

## Key Guidelines
1. Generate one bounding box for one potential instance / region. Do not output bounding boxes covering multiple
instances.
2. (for GPT-4o only) The top-left corner of the input images is coordinate [0, 0], and the bottom-right corner is [1, 1].
The output bounding box coordinate is in [x, y, w, h] format. You should also give confidence scores (range from 0 to 1)
for every bounding boxes you predict.
2. (for Gemini only) The output coordinates are relative widths or heights in range [0,1], scaled by 1000 and converted to
an integer. The output bounding box coordinate is in [xmin, ymin, xmax, ymax] format. You should also give confidence
scores (range from 0 to 1) for every bounding boxes you predict.
3. The input textual prompt can indicate one or more instances / regions within the image pairs, or it can indicate no
instance / region.
4. You should make full use of contextual information across input images to compare, analyze, and reason to find the
target instances.
5. Output results strictly in accordance with the given output format, and converted into JSON format.
6. The input text prompt may describe multiple groups of instances. For example, ‘apples of the same colors’ may indicate
several red apples and several green apples. In such case, you should group the red and green apple into different groups
and add addition keys in the output, e.g., ‘Boxes within image1 (group 2)’. In each group, all the apples referred to is
either red or green.
7. The group number depends on the inputs. The ‘Boxes within ...’ keys are not output if not applicable.

## Output Format
Input prompt: [textual description for the candidate instances / regions]
Analysis: [interpret text prompt and paired images, then explain some key factors for decision making]
Positive: [answer ‘True’ if there is any relevant instance, otherwise answer ‘False’]
Selected image: [answer ‘image1’ or ‘image2’ or ‘both’ or ‘none’]
Boxes within image1 (group 1): [[box1 for instance1], [box2 for instance2], ...]
Scores within image1 (group 1) [score1 for box1, score2 for box2, ...]
Boxes within image2 (group 1): [[box3 for instance3], [box4 for instance4], ...]
Scores within image1 (group 1) [score3 for box3, score4 for box4, ...]
Boxes within image1 (group 2): [[box5 for instance5], [box6 for instance6], ...]
Scores within image1 (group 2) [score5 for box5, score6 for box6, ...]
Boxes within image2 (group 2): [[box7 for instance7], [box8 for instance8], ...]
Scores within image1 (group 2) [score7 for box7, score8 for box8, ...] (remove or add more groups if applicable)

is adopted. As each GPT-generated phrase only refers one
instance within images, we selected the top-1 prediction as
the final results. Moreover, a confidence threshold of 0.05
is used to filter out the less confident predictions.

Finetuned Baseline. We select the advanced Qwen2-VL-
7B [75] as our baseline and construct an instruction tun-
ing dataset for performance boosting. Concretely, the in-
struction tuning dataset contains two different types of data:

multi-context samples for image-level tasks and instance-
level tasks. We collect ∼7.5K multi-context samples from
Birds-to-Words [16] and Multi-VQA [27], as datasets for
multi-context image-level tasks (e.g., multi-image caption-
ing and image-level VQA) are already available. Due to
the lack of multi-context instance-level task samples, we
synthesize pseudo multi-image samples based on existing
detection datasets (i.e., LVIS [22] and OmniLabel [64]).
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Table B.3. The system prompt we used for Qwen2-VL.

# Your Role: excellent object detector

## Objective
You will be provided with two images and a text describing some instances of interest in the images. Then, you will
analyze all inputs and find instances / regions in the images that match the input text prompt from the images. Finally, you
will output high-quality bounding box coordinates for each potential instance / region.

## Key Guidelines
1. Generate one bounding box for one potential instance / region. Do not output bounding boxes covering multiple
instances.
2. The input textual prompt can indicate one or more instances / regions within the image pairs, or it can indicate no
instance / region.
3. You should also give confidence scores (range from 0 to 1) for every bounding boxes you predict.
4. You should make full use of contextual information across input images to compare, analyze, and reason to find the
target instances.
5. Output results strictly in accordance with the given output format.

## Output Format
The output format should strictly follow the examples:
1. <|img id start|>xx<|img id end|><|object ref start|>xxx<|object ref end|><|box start|>(xx,xx),(xx,xx)<|box end
|><|score start|>xx<|score end|>
2. <|img id start|>xx<|img id end|><|object ref start|>xxx<|object ref end|><|box start|>(xx,xx),(xx,xx)<|box end
|><|score start|>xx<|score end|><|img id start|>xx<|img id end|><|object ref start|>xxx<|object ref end|><|box
start|>(xx,xx),(xx,xx)<|box end|><|score start|>xx<|score end|>...

3. xxx does not exist.

More specifically, we randomly select two images and gen-
erate instructions based on the original object category or
referring annotations of the two images, such as ‘Output
the bounding boxes of <category name> in the first im-
age’, ‘Output the bounding boxes of <object description>
in the two images’, and etc. We generate ∼53K synthetic
multi-context instance-level task samples for training.

We finetune Qwen2-VL-7B with the LoRA [25] using
LLaMA-Factory [95] framework. The model is finetuned
using ∼60K training samples and bfloat16 format over 3
epochs. The learning rate is set to 1e-4 with a cosine
annealing scheduler, and the global batch size is set to
32. All other settings and hyper-parameters follow the de-
fault choices of LLaMA-Factory. After the model trained,
we use the prompt ‘Output the bounding boxes of <input
description>’ for multi-context visual grounding.

C. Additional Experimental Results

Ablation Study for the Finetuned Baseline. Figure B.2
illustrates the effectiveness of instruction tuning with dif-
ferent data. Models finetuned with only multi-context
image-level task or instance-level task samples obtain per-
formance degradation. Particularly, the performance of
model trained with only collected image-level task samples

7B img ft 7B ins ft 7B img&ins ft 7B w/o ft 72B w/o ft
0
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Figure B.2. Effectiveness of instruction tuning data for the fine-
tuned baseline. The img ft, ins ft and img&ins ft denote the
models trained with collected image-level task samples, synthetic
instance-level task samples and merged samples, respectively.

decreases significantly. The model trained with only syn-
thetic instance-level task samples also shows sightly per-
formance drop compared to the model without instruction
tuning. We conjecture that most of the synthetic data gener-
ated based on object detection datasets [22, 64] only boosts
the cross-image referring abilities and brings limited cross-
image comparison and reasoning capabilities. After train-
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Table B.4. The system prompt we used for grounding phrase generation in the stepwise baseline.

# Your Role: excellent referring phrase generator

## Objective
You will be provided with two images and a text describing some instances of interest in the images. Then, you will
analyze all inputs and find instances / regions in the images that match the input text prompt from the images. Finally, you
will output high-quality referring phrases for each potential instance / region for subsequent grounding tasks.

## Key Guidelines
1. Writing a unique referring phrase for each potential instance / region. Do not output a phrase to refer to multiple
instances.
2. The given referring phrases should be as concise as possible while maintaining sufficient distinctiveness, allowing for
easy differentiation of an instance from the image based on the provided referring phrases.
3. The input textual prompt can indicate one or more instances / regions within the image pairs, or it can indicate no
instance / region.
4. The given referring phrase could include the appearance, category and context information of the candidate instances
/ regions. Any other clues that can better differentiate and identify candidate areas/objects are acceptable.
5. The given referring phrase cannot contain cross-image information.
6. Output results strictly in accordance with the given output format, and converted into JSON format.
7. The input text prompt may describe multiple groups of instances. For example, ‘apples of the same colors’ may indicate
several red apples and several green apples. In such case, you should group the red and green apple into different groups
and add addition keys in the output, e.g., ’Referring phrases for instances within image1 (group 2)’. In each group, all the
apples referred to is either red or green.
8. The group number depends on the inputs. The ’Referring phrases ...’ keys are not output if not applicable.

## Output Format
Input prompt: [textual description for the candidate instances / regions]
Analysis: [interpret text prompt and paired images, then explain some key factors for decision making]
Positive: [answer ‘True’ if there is any relevant instance, otherwise answer ‘False’]
Selected image: [answer ‘image1’ or ‘image2’ or ‘both’ or ‘none’]
Referring phrases for instances within image1 (group 1): [‘phrase1 for instance1’, ‘phrase2 for instance2’, ...]
Referring phrases for instances within image2 (group 1): [‘phrase3 for instance3’, ‘phrase4 for instance4’, ...]
Referring phrases for instances within image1 (group 2): [‘phrase5 for instance5’, ‘phrase6 for instance6’, ...]
Referring phrases for instances within image2 (group 2): [‘phrase7 for instance7’, ‘phrase8 for instance8’, ...] (remove
or add more groups if applicable)

ing model with merged data, the finetuned baseline achieves
the best performance across image-level and instance-level
metrics, surpassing the pre-trained Qwen2-VL-7B by a non-
trivial margin. We also notice that a clear performance gap
remains when compared to the 72B model.

D. Datasheets for MC-Bench

D.1. Motivation
1. For what purpose was the dataset created? (Was there

a specific task in mind? Was there a specific gap that
needed to be filled? Please provide a description.)
The primary purpose of MC-Bench is to function as a
dynamic benchmark that continuously evolves and eval-
uates MLLMs for open-ended visual grounding in multi-

image scenarios. This dataset first explores a significant
yet largely overlooked research problem, i.e., grounding
objects from multi-image inputs based on open-ended
textual prompts. The benchmark results on MC-Bench
show a large performance gap between existing MLLMs
and humans, as illustrated in Table 2 in the main text.

2. Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?
This dataset was created by the authors of this paper.

3. Who funded the creation of the dataset? (If there is an
associated grant, please provide the name of the grantor
and the grant name and number.)
The institute of the authors funded the creation of the
dataset.
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4. Any other comments?
None.

D.2. Composition
1. What do the instances that comprise the dataset rep-

resent (e.g., documents, photos, people, countries)?
(Are there multiple types of instances (e.g., movies,
users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description.)
An instance of our dataset represent the multimodal
triplet (i.e., an image pair and a textual prompt describ-
ing the regions/objects within the images). More de-
tailed descriptions are provided in our paper.

2. How many instances are there in total (of each type,
if appropriate)?
Our dataset owns 2,000 samples (i.e., paired images and
corresponding text descriptions). We provide more de-
tailed dataset statistics in our paper.

3. Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from
a larger set? (If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set
(e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because
instances were withheld or unavailable).)
The dataset cannot contain all possible instances, as
the dataset is designed for open-ended visual grounding
evaluation. We try to covering diverse range of image
domains, disciplines and skills, but we can’t guarantee a
full sampling of them as discussed in §A.4.

4. What data does each instance consist of? ”Raw” data
(e.g., unprocessed text or images) or features? In either
case, please provide a description
Each instance of our dataset represent an image pair and
a textual prompt describing the regions/objects within
the images.

5. Is there a label or target associated with each in-
stance? If so, please provide a description.
Yes. We provide the bounding box annotations cover-
ing the regions described by the textual prompts. More
detailed descriptions are provide in our paper.

6. Is any information missing from individual in-
stances? (If so, please provide a description, explaining
why this information is missing (e.g., because it was un-
available). This does not include intentionally removed
information, but might include, e.g., redacted text.)
No. All necessary information has been provided.

7. Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)? ( If so, please describe how these relationships
are made explicit.)

Yes. Instances are categorized into three groups (i.e.,
referring, comparison and reasoning) based on the text
prompt style of each instance.

8. Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? (If so, please provide a
description of these splits, explaining the rationale be-
hind them.)
Yes. As MC-Bench is an evaluate-only dataset, all sam-
ples belong to the testing split.

9. Are there any errors, sources of noise, or redundan-
cies in the dataset? (If so, please provide a description.)
Yes. We try our best to improve the quality of annota-
tions, but the dataset might still contain a few missing
labeled objects or subjectivity inconsistencies.

10. Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., websites,
tweets, other datasets)? (If it links to or relies on ex-
ternal resources, a) are there guarantees that they will
exist, and remain constant, over time; b) are there of-
ficial archival versions of the complete dataset (i.e., in-
cluding the external resources as they existed at the time
the dataset was created); c) are there any restrictions
(e.g., licenses, fees) associated with any of the external
resources that might apply to a future user? Please pro-
vide descriptions of all external resources and any re-
strictions associated with them, as well as links or other
access points, as appropriate.)
Images in MC-Bench are from other publicly avail-
able datasets or self-contained. We repurpose these im-
ages for multi-context visual grounding. These external
datasets are commonly used and long-term exist. We use
the official archival versions of them. More detailed de-
scriptions of all external resources are provided in §B.1.

11. Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by le-
gal privilege or by doctor-patient confidentiality, data
that includes the content of individuals’ non-public
communications)? (If so, please provide a description.)
No.

12. Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might
otherwise cause anxiety? (If so, please describe why.)
Yes. Some of the scenes may bring anxiety to some peo-
ple, e.g., photos of car accidents and hospital surgeries.
However, we consider our dataset’s offensiveness to be
limited, since the source images are collected from prior
public datasets.

13. Does the dataset identify any subpopulations (e.g., by
age, gender)? (If so, please describe how these subpop-
ulations are identified and provide a description of their
respective distributions within the dataset.)
No. This is not explicitly identified.

14. Is it possible to identify individuals (i.e., one or more
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natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset? (If
so, please describe how.)
Yes. Some samples are about referring expression under-
standing, where models are required to localize some in-
dividuals from images based on the textual descriptions.

15. Does the dataset contain data that might be consid-
ered sensitive in any way (e.g., data that reveals racial
or ethnic origins, sexual orientations, religious be-
liefs, political opinions or union memberships, or lo-
cations; financial or health data; biometric or ge-
netic data; forms of government identification, such
as social security numbers; criminal history)? (If so,
please provide a description.)
No. There are no sensitive data used.

16. Any other comments?
None.

D.3. Collection Process
1. How was the data associated with each instance ac-

quired? (Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or in-
directly inferred/derived from other data, was the data
validated/verified? If so, please describe how.)
The images are collected from existing public data
sources. The text descriptions of image pairs are writ-
ten by the annotators, based on the content of the image
pairs.

2. What mechanisms or procedures were used to collect
the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?
(How were these mechanisms or procedures validated?)
Software program and manual human curation.

3. If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilis-
tic with specific sampling probabilities)?
The image are randomly selected from other datasets
with specific topics.

4. Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdwork-
ers paid)?
The data are collected by the authors and students. The
involved students are paid nicely.

5. Over what timeframe was the data collected? (Does
this timeframe match the creation timeframe of the data
associated with the instances (e.g., recent crawl of old
news articles)? If not, please describe the timeframe in
which the data associated with the instances was cre-
ated.)

The dataset was collected in the Spring of 2024, which
does not necessarily reflect the timeframe of the data col-
lected.

6. Were any ethical review processes conducted (e.g., by
an institutional review board)? (If so, please provide a
description of these review processes, including the out-
comes, as well as a link or other access point to any sup-
porting documentation.)
No ethical review processes were conducted, since the
source images are collected from other public datasets.

7. Did you collect the data from the individuals in ques-
tion directly, or obtain it via third parties or other
sources (e.g., websites)?
The images are collected from other sources (i.e., repur-
pose published datasets), while the text descriptions and
bounding boxes are labeled by our annotators.

8. Were the individuals in question notified about the
data collection? (If so, please describe (or show with
screenshots or other information) how notice was pro-
vided, and provide a link or other access point to, or oth-
erwise reproduce, the exact language of the notification
itself.)
N/A.

9. Did the individuals in question consent to the collec-
tion and use of their data? (If so, please describe (or
show with screenshots or other information) how con-
sent was requested and provided, and provide a link or
other access point to, or otherwise reproduce, the exact
language to which the individuals consented.)
N/A.

10. If consent was obtained, were the consenting individ-
uals provided with a mechanism to revoke their con-
sent in the future or for certain uses? (If so, please
provide a description, as well as a link or other access
point to the mechanism (if appropriate).)
N/A.

11. Has an analysis of the potential impact of the dataset
and its use on data subjects (e.g., a data protection
impact analysis) been conducted? (If so, please pro-
vide a description of this analysis, including the out-
comes, as well as a link or other access point to any sup-
porting documentation.)
N/A.

12. Any other comments?
None.

D.4. Preprocessing/cleaning/labeling
1. Was any preprocessing/cleaning/labeling of the data

done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? (If
so, please provide a description. If not, you may skip the
remainder of the questions in this section.)
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Yes. We reorganized images collected from existing
datasets and introduced extra annotations. Specifically,
we provided textual prompts for each image pair describ-
ing some objects within the images, and we also labeled
the language-grounded regions using bounding boxes.

2. Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantic-
ipated future uses)? If so, please provide a link or other
access point to the “raw” data.
Yes. MC-Bench itself contains partial the raw data (i.e.,
textual descriptions and bounding box annotations). The
rest of raw data (i.e., images) were collected from other
published datasets (see §B.1) and we did not modify the
images.

3. Is the software that was used to preprocess/clean/la-
bel the data available? If so, please provide a link or
other access point.
We leverage the open-source annotation tool, Label
Studio (https://github.com/HumanSignal/
label-studio), in both text and box annotation
stages, owing to its programmable and user-friendly in-
terface for annotating paired images.

4. Any other comments?
None.

D.5. Uses
1. Has the dataset been used for any tasks already? (If

so, please provide a description.)
The images of MC-Bench are collected from published
datasets for other tasks. In contrast, the textual prompts
and bounding box annotations in MC-Bench are newly
introduced and have not used for any other tasks.

2. Is there a repository that links to any or all papers or
systems that use the dataset? (If so, please provide a
link or other access point.)
Yes. We are going to maintain a leaderboard for MC-
Bench on the project page (https://xuyunqiu.
github.io/MC-Bench/). The links of all the eval-
uated methods will be provided.

3. What (other) tasks could the dataset be used for?
There are many more, such as multi-image VQA and
common object detection.

4. Is there anything about the composition of the
dataset or the way it was collected and preprocessed/-
cleaned/labeled that might impact future uses? (For
example, is there anything that a future user might need
to know to avoid uses that could result in unfair treat-
ment of individuals or groups (e.g., stereotyping, quality
of service issues) or other undesirable harms (e.g., finan-
cial harms, legal risks) If so, please provide a descrip-
tion. Is there anything a future user could do to mitigate
these undesirable harms?)
No.

5. Are there tasks for which the dataset should not be
used? (If so, please provide a description.)
No.

6. Any other comments?
None.

D.6. Distribution
1. Will the dataset be distributed to third parties outside

of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created? (If so,
please provide a description.)
Yes, the dataset is publicly available on the Internet.

2. How will the dataset will be distributed (e.g., tarball
on website, API, GitHub)? (Does the dataset have a
digital object identifier (DOI)?)
On our GitHub project page (https://xuyunqiu.
github.io/MC-Bench/).

3. When will the dataset be distributed?
The dataset was first released in June 2024.

4. Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? (If so, please describe
this license and/or ToU, and provide a link or other ac-
cess point to, or otherwise reproduce, any relevant li-
censing terms or ToU, as well as any fees associated with
these restrictions.)
The dataset is licensed under a CC license. More de-
tailed license information is provided in §A.1.

5. Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?
(If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce, any
relevant licensing terms, as well as any fees associated
with these restrictions.)
As far as we know, no.

6. Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances?
(If so, please describe these restrictions, and provide a
link or other access point to, or otherwise reproduce, any
supporting documentation.)
As far as we know, no.

7. Any other comments?
None.

D.7. Maintenance
1. Who is supporting/hosting/maintaining the dataset?

The authors.
2. How can the owner/curator/manager of the dataset

be contacted (e.g., email address)?
The dataset owner can be contacted through the authors’
email address.

3. Is there an erratum? (If so, please provide a link or
other access point.)
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Currently, no. As errors are encountered, future versions
of the dataset may be released (but will be versioned).

4. Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances’)? (If
so, please describe how often, by whom, and how up-
dates will be communicated to users (e.g., mailing list,
GitHub)?)
Yes. The dataset will be update by the dataset owner.
The update information will be posted on the project
page.

5. If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time
and then deleted)? (If so, please describe these limits
and explain how they will be enforced.)
No.

6. Will older versions of the dataset continue to be sup-
ported/hosted/maintained? (If so, please describe how.
If not, please describe how its obsolescence will be com-
municated to users.)
Yes. The older versions of the dataset will be provided
in the same webpage.

7. If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do
so? (If so, please provide a description. Will these con-
tributions be validated/verified? If so, please describe
how. If not, why not? Is there a process for communi-
cating/distributing these contributions to other users? If
so, please provide a description.)
Yes. Others may do so and should contact the original
authors about incorporating fixes/extensions.

8. Any other comments?
None.
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